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Abstract

The derivation of the correction of order 3 for the expansion of 2 dimensional electromagnetic fields perturbed by

the presence of dielectric inhomogeneities of small diameter was completed in [3]. However previous numerical work

such as that in [6] and in [14] do not corroborate the existence of these correcting terms. The inhomogeneities used in all

those numerical simulations were collections of ellipses. In this paper we propose to elucidate this discrepancy. We

prove that the correction of order 3 is zero for any inhomogeneity that has a center of symmetry. We present numerical

experiments for asymmetric inhomogeneities. They illustrate the importance of the correction of order 3. Finally we

prove that numerical schemes based on the usual quadrature for solving mixed linear integral equations on a smooth

contour with smooth integration kernels and kernels involving logarithmic singularities preserve at the discrete level the

fact that correcting terms of order 3 are zero for inhomogeneities that are symmetric about their center.
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1. Introduction

Let X be a smooth domain in R2. The outward unit normal to oX is denoted by m. Assume that X
contains a finite number of inhomogeneities, each of the form zj þ aBj, where Bj � R2 is a bounded, smooth

domain containing the origin. The total collection of inhomogeneities is
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Ba ¼ [mj¼1fzj þ aBjg:

The points zj 2 X; j ¼ 1; . . . ;m; which determine the location of the inhomogeneities, are assumed to satisfy
the following inequalities:

jzj 	 zljP c0 > 0 8j 6¼ l and distðzj; oXÞP c0 > 0 8j: ð1Þ

Assume that a > 0, the common order of magnitude of the diameters of the inhomogeneities, is sufficiently
small, that these inhomogeneities are disjoint, and that their distance to R2 n X is larger than c0=2. Let l0
and e0 denote the permeability and the permittivity of the background medium. Let them satisfy the usual
requirements l0 > 0 and Re e0 > 0; Im e0 P 0. Let lj > 0 and Re ej > 0, Im ej P 0 denote the permeability

and the permittivity of the jth inhomogeneity, zj þ aBj. Introduce the piecewise constant magnetic per-
meability

laðxÞ ¼
l0; x 2 X n �BBa;
lj; x 2 zj þ aBj; j ¼ 1; . . . ;m:

�
ð2Þ

If we allow the degenerate case a ¼ 0, then the function l0ðxÞ equals the constant l0. The piecewise
constant electric permittivity, eaðxÞ is defined analogly. Consider the solutions to the time-harmonic
Maxwell�s equations with TE symmetry and expð	ixtÞ time dependence. Let Ea be the electric field (or

rather, the transverse strength) in the presence of the inhomogeneities. It satisfies the Helmholtz

equation

div
1

la

gradEa

� �
þ x2eaEa ¼ 0 in X; ð3Þ

with the boundary condition Ea ¼ f on oX, where x > 0 is a given frequency. Eq. (3) contains implicitly the
conditions on Ea across the boundary oBj. Ea is required to be continuous across oBj and its normal de-
rivative has to satisfy the following jump condition:

1

l0

oEa

om

����
þ
	 1

lj

oEa

om

����
	
¼ 0:

The electric field, E0, in the absence of any inhomogeneities, satisfies the following equation:

DE0 þ k2E0 ¼ 0 in X; ð4Þ

where k2 ¼ x2l0e0, with E0 ¼ f 2 H 1
2ðoXÞ on oX. In order to insure well-posedness we shall assume

that

k2 is not an eigenvalue for the operator	 D in L2ðXÞ
with homogeneous Dirichlet boundary conditions: ð5Þ

Under this assumption it was proved in [13] that Eq. (3) together with the boundary condition Ea ¼ f on oX
is a well-posed problem for a small enough.
Let GDðx; yÞ be the Dirichlet Green function in X corresponding to a Dirac mass at the point x. That is,

GD is the solution to

	ðDy þ k2ÞGDðx; yÞ ¼ dx in X;
GD ¼ 0 on oX:

�
ð6Þ

It is possible to show that GDðx; yÞ ¼ GDðy; xÞ for x and y in X such that x 6¼ y.
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The electric field Ea satisfies the integral representation formula

EaðxÞ ¼ E0ðxÞ þ
Xm
j¼1

1

 
	 l0

lj

!Z
zjþaBj

gradEaðyÞ � gradyGDðx; yÞdy

þ k2
Xm
j¼1

ej
e0

�
	 1
�Z

zjþaBj

EaðyÞGDðx; yÞdy: ð7Þ

However the following representation formula is also sometimes convenient to use:

EaðxÞ 	 E0ðxÞ 	
Z
oX
Gkðx; yÞ oEaðyÞ

omðyÞ

�
	 oE0ðyÞ

omðyÞ

�
dsðyÞ

¼
Xm
j¼1

1

 
	 l0

lj

!Z
zjþaBj

gradEaðyÞ � gradyGkðx; yÞdy þ k2
Xm
j¼1

ej
e0

�
	 1
�Z

zjþaBj

EaðyÞGkðx; yÞdy; ð8Þ

for x in X, where the free space Green�s function

Gkðx; yÞ ¼ i
4
H 1
0 ðkjx	 yjÞ: ð9Þ

We then take the limit of the normal derivative of the above expression as x approaches oX to find

1

2

oEaðxÞ
omðxÞ

�
	 oE0ðxÞ

omðxÞ

�
	
Z
oX

oGkðx; yÞ
omðxÞ ðEaðyÞ 	 E0ðyÞÞdsðyÞ

¼
Xm
j¼1

1

 
	 l0

lj

!Z
zjþaBj

gradEaðyÞ � grady
oGkðx; yÞ
omðxÞ dy þ k2

Xm
j¼1

ej
e0

�
	 1
�Z

zjþaBj

EaðyÞ
oGkðx; yÞ
omðxÞ dy;

ð10Þ

for x on oX. The expansion in the argument a of the right-hand side integral in (7) or (8) or (10) was carried
out in [3]. A formal derivation followed by a rigorous proof for the derivation of the first two terms can be

found in that reference. They are of orders 2 and 3 in a, respectively. This is an improvement over [13]
where only the first term of the expansion was found; see also the prior works of Cedio-Fengya et al. [6] for

the conductivity problem and Friedman and Vogelius [7] for the case of perfectly conducting or insulating

inhomogeneities. These asymptotic expansions are designed for developing efficient algorithms to identify

dielectric inhomogeneities of small diameter with important applications in medical imagining, detection of

breast cancer, tumors, and land mines, see [1,2]. The higher-order terms in these formulas are essential
particularly when the leading order term in the asymptotic expansion of the electromagnetic fields vanishes.

The asymptotic formula derived in [3] involves polarization tensors associated with the electromagnetic

inhomogeneities that seem to be natural generalizations of the tensors that have been introduced by Schiffer

and Szeg€oo [12] and thoroughly studied by many other authors, see [6–8,10,11].
In this paper we propose to present numerical results illustrating the use of the first two terms and we

show that the term of order 3 vanishes for some geometries of inhomogeneities including ellipses. We also

show that usual numerical schemes for finding the term of order 3 preserve the fact that these are zero for

symmetric inhomogeneities, in other words if the related computer codes are run for symmetric inhomo-
geneities, those terms of order 3 are roughly as close to 0 as machine precision permits even for small values

of grid points on the boundary of the inhomogeneities. For the sake of simplicity all numerics for this paper

were performed when only one inhomogeneity is present. We are confident that the same results hold when

several inhomogeneities are present since all the mathematical arguments hold in that case too. Actually in

the case where all inhomogeneities are ellipses numerical experiments related to the terms of order 2 were
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already successfully conducted. They were of course missing the existence of those terms of order 3. They

indicated that the remainder term in the expansion is of order 4, see [6,14].

We can safely drop the index j in Bj and zj all through the rest of this paper so that the only inho-
mogeneity will be B, centered at z and denote the electric permittivity and magnetic permeability inside
zþ aB by e� and l�, respectively.

Although this paper focuses on TE fields, all the results are easily carried over to the case of TM fields.

Neumann problems are solved in place of Dirichlet problems and the roles of e and l are exchanged.

Remark. An analog expansion within the framework of the three dimensional theory has been developed

for the Helmholtz equation as well as for the full Maxwell�s equations, see [1,4]. However in that case the
numerical schemes for solving for the electric field throughout a body and for finding numerical values for

the correction terms in the expansion, are much more involved and numerically costly. It is noteworthy that
highly accurate and fast schemes for solving integral equations on the boundary of three dimensional

bodies have just recently been the subject of a state of the art study, see [5].
2. The corrections of orders 2 and 3

In this section we give explicit formulas for the terms in a2 and a3 appearing when expanding the right-
hand side of (7) and of (10).
Let v̂vl

1iðn1; n2Þ, i ¼ 1; 2, be the unique solution to

div 1l grad v̂v
l
1i ¼ 0; in R2;

lim
jnj!þ1

ðv̂vl
1i 	 niÞ ¼ 0:

8<
: ð11Þ

Eq. (11) contains implicitly the conditions on v̂vl
1i across the boundary oB. v̂vl

1i is required to be continuous

across oB and its normal derivative has to satisfy the following jump condition:

1

l0

v̂vl
1i

m

�����
þ

	 1

l�

v̂vl
1i

m

�����
	

¼ 0:

Existence and uniqueness for v̂vl
1i will be outlined in a subsequent section. The expression of the correction

term of order 2 corresponding to the expansion of the right-hand side in (7) is, as rigorously derived in

[3,13],

E1;DðxÞ ¼ 1

�
	 l0

l�

�
oiE0ðzÞM1;1

ij � oz;jGDðx; zÞ þ k2 1

�
	 e�

e0

�
jBjE0ðzÞGDðx; zÞ; ð12Þ

where the generalized polarization tensor M1;1 of order (1, 1) is defined by

M1;1
ij ¼

Z
oB

ov̂vl
1i

om

�����
	

ðnÞnj dsðnÞ: ð13Þ

Analog expressions are obtained for the expansions of the right-hand sides of (8) and (10). In expanding the

integrals in (10) the term of order 2 is

oE1;kðxÞ ¼ 1

�
	 l0

�
oiE0ðzÞM1;1

ij � oj
oGkðx; zÞ þ k2 1

�
	 e�

�
jBjE0ðzÞ

oGkðx; zÞ
: ð14Þ
omðxÞ l� omðxÞ e0 omðxÞ
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We obtain from [3] the two formulas

EaðxÞ 	 E0ðxÞ 	 a2E1;DðxÞ ¼ Oða3Þ; ð15Þ

for x in X bounded away from B,

1

2

oEaðxÞ
omðxÞ

�
	 oE0ðxÞ

omðxÞ

�
	
Z
oX

oGkðx; yÞ
omðxÞ ðEaðyÞ 	 E0ðyÞÞdsðyÞ 	 a2

oE1;kðxÞ
omðxÞ ¼ Oða3Þ; ð16Þ

for x on oX. We need to introduce four other functions analog to v̂vl
1i in order to find the next term in the

expansions of (7) and (10). Let v̂vl;e
2ijðn1; n2Þ, i ¼ 1; 2, j ¼ 1; 2, be the unique solution to the following

problem:

div 1l grad v̂v
l;e
2ij ¼ 1

l0

eðnÞ
e0

dij in R2;

lim
jnj!þ1

v̂vl;e
2ij 	 1

2
ninj 	 dij 12p jBj 1	

e�
e0

� 

log jnj

� 

¼ 0:

8<
: ð17Þ

Eq. (17) contains implicitly the conditions on v̂vl;e
2ij across the boundary oB. v̂v

l;e
2ij is required to be continuous

across oB and its normal derivative has to satisfy the following jump condition:

1

l0

v̂vl;e
2ij

m

�����
þ

	 1

l�

v̂vl;e
2ij

m

�����
	

¼ 0:

Existence and uniqueness for v̂vl;e
2ij will be outlined in a following section. In order to be consistent with

the notations introduced in [3], we define the generalized polarization tensors of order (1, 2) and (2, 1)

by

M1;2
ijk ¼ 1

2

Z
oB

ov̂vl
1i

om

�����
	

ðnÞnjnk dsðnÞ; ð18Þ

and

M2;1
ijk ¼

Z
oB

ov̂vl;e
2ij

om

�����
	

ðnÞnk dsðnÞ 	 dij
e�l�
e0l0

Z
B

nk dn: ð19Þ

The expression of the correction term of order 3 corresponding to the expansion of the right-hand side of

(7) is

E2;DðxÞ ¼ 1

�
	 l0

l�

�
o2ijE0ðzÞM

2;1
ijk ok;zGDðx; zÞ

h
þ oiE0ðzÞM1;2

ijk o
2
jk;zGDðx; zÞ

i

þ k2
e�
e0

�
	 1
�

oiE0ðzÞ
Z
B
v̂vl
1iðnÞdn

� �
GDðx; zÞ

�
þ E0ðzÞ

Z
B

nj dn

� �
oj;zGDðx; zÞ

�
: ð20Þ

Analog expressions are obtained for the expansions of the right-hand sides of (8) and (10). In expanding the
integrals in (10) the term of order 3 is

oE2;kðxÞ
omðxÞ ¼ 1

�
	 l0

l�

�
o2ijE0ðzÞM

2;1
ijk ok;z

oGkðx; zÞ
omðxÞ

�
þ oiE0ðzÞM1;2

ijk o
2
jk;z

oGkðx; zÞ
omðxÞ

�

þ k2
e�

�
	 1
�

oiE0ðzÞ
Z
v̂vl
1iðnÞdn

� �
oGkðx; zÞ

�
þ E0ðzÞ

Z
nj dn

� �
oj;z

oGkðx; zÞ
�
: ð21Þ
e0 B omðxÞ B omðxÞ
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We obtain from [3] the two formulas

EaðxÞ 	 E0ðxÞ 	 a2E1;DðxÞ 	 a3E2;DðxÞ ¼ Oða4Þ; ð22Þ

for x in X bounded away from B, and

1

2

oEaðxÞ
omðxÞ

�
	 oE0ðxÞ

omðxÞ

�
	
Z
oX

oGkðx; yÞ
omðxÞ ðEaðyÞ 	 E0ðyÞÞdsðyÞ 	 a2

oE1;kðxÞ
omðxÞ 	 a3

oE2;kðxÞ
omðxÞ ¼ Oða4Þ; ð23Þ

for x on oX.
3. On the existence and uniqueness of the functions v̂v
l

1i and v̂v
l;e
2ij

Using the strong maximum principle for harmonic equations and the fact that the limits at infinity in (11)

and in (17) are to be understood in a uniform sense we see that Eqs. (11) and (17) have at most one solution.

For the existence of those functions we set

ĝgl
1i ¼ v̂vl

1i 	 ni; ĝgl;e
2ij ¼

v̂vl;e
2ij 	 1

2
ninj 	 dij 12p jBj 1	

e�
e0

� 

logðjnjÞ in R2 n B;

v̂vl;e
2ij 	 1

2
dij

l�e�
l0e0

ninj in B:

8<
: ð24Þ

That way ĝgl
1i and ĝg

l;e
2ij are harmonic functions in R

2 n B and in B that tend uniformly to 0 at infinity. Then ĝgl
1i

can be sought as a single layer potential and ĝgl;e
2ij can be sought as the sum of a single and a double layer

potential. Integral equations on oB have to be solved in the unknown densities, they are of Fredholm type.
Well posedness for these equations can be derived from the uniqueness for ĝgl

1i and ĝg
l;e
2ij .

In order to numerically evaluate (13), (18), and (19) it will prove useful to solve for v̂vl
1i,

ov̂vl
1i

om j	 and v̂vl;e
2ij

restricted to oB. They respectively satisfy the following equations which are derived from representing ĝgl
1i

and ĝgl;e
2ij using integrals on oB. In the following equations:

G0ðn; n0Þ ¼ 1

2p
log

1

jn 	 n0j

 !

is the free space Green�s function for the laplacian and n is any point on oB. We have

1

2
1

�
þ l0

l�

�
v̂vl
1iðnÞ þ

l0
l�

�
	 1
�Z

oB
v̂vl
1iðn

0Þ oG0

omðn0Þ ðn; n
0Þdsðn0Þ ¼ ni; ð25Þ
1

2
1

�
þ l0

l�

�
ov̂vl
1i

om

�����
	

ðnÞ þ l0
l�

�
	 1
�Z

oB

ov̂vl
1i

om

�����
	

ðn0Þ oG0

omðnÞ ðn; n
0Þdsðn0Þ ¼ mi; ð26Þ

and

1

2
1

�
þ l0

l�

�
v̂vl;e2ijjoBðnÞ þ

l0
l�

�
	 1
�Z

oB
v̂vl;e
2ijjoBðn0Þ oG0

omðn0Þ ðn; n
0Þdsðn0Þ ¼ 1

2
ninj þ dij 1

�
	 e�

e0

�Z
B
G0ðn; n0Þdn0:

ð27Þ

The above equation can be rewritten in terms of integrals on oB only. Indeed assume in a first step that n is
in R2 n X and integrate by parts
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Z
B
G0ðn; n0Þdn0 ¼

Z
oB
G0ðn; n0Þ 1

2

oðn0
1Þ
2

omðn0Þ dsðn
0Þ 	

Z
B
rn0G

0ðn; n0Þrð1
2
ðn0
1Þ
2Þdn0

¼
Z
oB
G0ðn; n0Þn0

1m1ðn
0Þdsðn0Þ 	

Z
oB

1

2
ðn0
1Þ
2 oG0

omðn0Þ ðn; n
0Þdsðn0Þ: ð28Þ

As n approaches oB we obtain at the limitZ
B
G0ðn; n0Þdn0 ¼

Z
oB
G0ðn; n0Þn0

1m1ðn
0Þdsðn0Þdsðn0Þ 	

Z
oB

1

2
ðn0
1Þ
2 oG0

omðn0Þ ðn; n
0Þdsðn0Þ 	 1

4
ðn1Þ2:

Modifying the right-hand side in (27) accordingly, we obtain

1

2
1

�
þ l0

l�

�
v̂vl;e
2ijjoBðnÞ þ

l0
l�

�
	 1
�Z

oB
v̂vl;e
2ijjoBðn0Þ oG0

omðn0Þ ðn; n
0Þdsðn0Þ

¼ 1
2
ninj þ dij 1

�
	 e�

e0

� Z
oB
G0ðn; n0Þn0

1m1ðn
0Þdn0

 
	
Z
oB

oG0

omðn0Þ ðn; n
0Þ ðn

0
1Þ
2

2
dn0 	 ðn1Þ2

4

!
: ð29Þ
4. Numerical results

To illustrate the above expansions, we solved numerical equations for three different geometries for the

inhomogeneity B. We used Nystrom�s method for integral equations with 2n grid points on oX and 2n grid
points on oB with n ¼ 90 although in many cases quite accurate results can be obtained with smaller values
of n. The numerical method we developed is, in its outline, inspired by chapter 12 from [9]. However the

method described in that reference corresponds to the trivial case where no inhomogeneity is present. We
had to extend that method to domains with inclusions and therefore we had to solve systems of integral

equations. A detailed account of the set up of the integral equations for a domain with inclusions and the

discretization of those systems of equations can be found in [14]. In this paper we discuss the details of the

numerical schemes designed to obtain the corrections of order 2 and 3. This will be done in the following

section. For each of the three different geometries we solved for 11 values of a taking zþ aB to be the only
inhomogeneity in X. In all cases X is the unit circle of R2, z ¼ ðz1; z2Þ is the point ð0:2; 0:3Þ and the values for
a are 10	ðj	1Þ=10, 16 j6 11. The values for the electromagnetic coefficients were chosen to be k ¼ 2,
k� ¼ 1:55þ 2i, l ¼ :5, l� ¼ :725. Note that although � and �� are not specified this data provides a unique
value for the ratio ��=� via the formula

��
�
¼ k2�l
k2l�

: ð30Þ

We choose to impose the following Dirichlet boundary condition on oX

Eaðx1; x2Þ ¼ H 1
0 ðkjðx1; x2Þ 	 ðq; 0ÞjÞ;

where q ¼ 4 and H 1
0 is the usual Hankel function of the first kind of order 0. In the first case oB is the ellipse

of equation

xðtÞ ¼ a cosðhÞ cosðtÞ 	 b sinðhÞ sinðtÞ þ z1;
yðtÞ ¼ a sinðhÞ cosðtÞ þ b cosðhÞ sinðtÞ þ z2;

�
ð31Þ

for 06 t6 2p where h ¼ 1, a ¼ 0:08, b ¼ 0:06. X and B are sketched in Fig. 1.



Fig. 1. The domain X and the inhomogeneity shaped as an ellipse, a ¼ 1.
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In Fig. 2, we plotted using stars the log of the discrete maximum of the magnitude of the left-hand

side of (16) against the log of a. The dashed line is just a line of slope 4. We plotted it to give a sense
of scale.

This graphic demonstrates that the quantity in the left-hand side of (16) is of order a4 although it was
expected to be of order a3. In the following table we wrote the maximum of the computed value of the

magnitude of M2;1
ijk as i; j; k run over f1; 2g for different values of n where 2n is the number of grid points on

oB used for calculating M2;1
ijk . In the last column we indicate the discrete maximum of the magnitude of the

left-hand side of (16) in the case where a ¼ 1.
Similar orders of magnitude are observed for

M1;2
ijk ;

Z
B
v̂vl
1iðnÞdn and

Z
B

nj dn:
Fig. 2. Numerical results for the geometry sketched in Fig. 1. The log of a is on the horizontal axis, the dashed is a line of slope 4. The
11 crosses represent the log of the norm of (16) graphed against the log of a.
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It is apparent that our code preserves the fact that oE2;k=om is zero if B is an ellipse. This will be rigorously
proved in the next section.

In the second case B is the object shaped as a kidney bean whose contour is given by the equations

xðtÞ ¼ a cosðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1þ cosðtÞ

p
cosðtÞ 	 b sinðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1þ cosðtÞ

p
sinðtÞ þ z1;

yðtÞ ¼ a sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1þ cosðtÞ

p
cosðtÞ þ b cosðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1þ cosðtÞ

p
sinðtÞ þ z2;

�
ð32Þ

for 06 t6 2p and where h ¼ 1:4, a ¼ 0:08, b ¼ 0:06. X and B are sketched in Fig. 3.
A magnified picture of the object B is represented in Fig. 4.
In Fig. 5, we plotted using stars the log of the discrete maximum of the magnitude of the quantity (16)

against the log of a. The dotted line is just a line of slope 3. We also plotted using squares the log of the
discrete maximum of the magnitude of the quantity in (23) against the log of a. The dashed line is just a line
of slope 4.

This graphic demonstrates that the expression in (16) is of order a3 whereas the expression in (23) is of
order a4.
In this last case B is the object whose shape is sketched in Fig. 6 and whose contour is given by the

equations

xðtÞ ¼ a cosðhÞ sinðcosðtÞÞ 	 b sinðhÞ sinðsinðtÞÞ þ z1;
yðtÞ ¼ a sinðhÞ sinðcosðtÞÞ þ b cosðhÞ sinðsinðtÞÞ þ z2;

�
ð33Þ

for 06 t6 2p and where h ¼ 	2, a ¼ 0:08, b ¼ 0:06. X and B are sketched in Fig. 7.
In Fig. 8, we plotted using stars the log of the discrete maximum of the magnitude of the expression (16)

against the log of a. The dashed line is a line of slope 4.
This graphic demonstrates that the expression (16) is of order a4. The same remark holds as in the first

case the quantities

M1;2
ijk ; M2;1

ijk ;

Z
B
v̂vl
1iðnÞdn and

Z
B

nj dn

are of negligible magnitude even for small values of n.
Fig. 3. The inhomogeneity defined by (32) in X, a ¼ 1.



Fig. 4. The inhomogeneity defined by (32) has no center of symmetry.

Fig. 5. Numerical results for the geometry sketched in Fig. 3. The log of a is on the horizontal axis. The dashed line is of slope 4, the
dotted line is of slope 3. The 11 squares represent the log of the norm of (16) graphed against the log of a. The 11 crosses represent the
log of the norm of (23) graphed against the log of a.

Fig. 6. The inhomogeneity defined by (33) is symmetric about its center.
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Fig. 8. Numerical results for the geometry sketched in Fig. 7. The log of a is on the horizontal axis. The dashed line is of slope 4. The
11 crosses represent the log of the norm of (16) graphed against the log of a.

Fig. 7. The inhomogeneity defined by (33) in X, a ¼ 1.
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In all cases we also evaluated the normal derivative on oX of the expressions in (15) and (22). All the

numerical output was of the same order of magnitude as in (16) and (23), as expected.
5. Study of the terms of order 3 for inhomogeneities that are symmetric about their center

In this section we show that the terms of order 3 vanish for inhomogeneities that are symmetric about a

point. For convenience we denote B the fixed inhomogeneity and we suppose that B ¼ 	B. We first derive



Table 1

n max jM2;1
ijk j max norm of (16)

1 2.206191581974134E) 019 1.49262741086771

2 3.255428736223880E) 019 0.537008508295939

4 1.638959506095633E) 019 7.218122917393703E) 002
8 1.521644651974750E) 019 1.024928358871951E) 003
16 3.460914846154340E) 019 1.536839894508883E) 004
32 2.270526284636852E) 019 1.548371599404250E) 004
64 5.086559795829020E) 019 1.548371599403280E) 004
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from the definition of v̂vl
1i and v̂v

l;e
2ij that a central symmetry for B implies that those terms of order 3 are zero.

Then, in order to explain the magnitude ratio pattern in Table 1, we analyze our computational scheme and

prove that it preserves at the discrete level the fact that a central symmetry in B yields zero for the terms of
order 3.

5.1. The continuous case

Proposition 5.1. The corrections of order 3 (20) and (21) are zero if the domain B is symmetric about its
center. More precisely, each of the tensor terms M1;2

ijk and M
2;1
ijk and each of the integralsZ

B
v̂vl
1iðnÞdn and

Z
B

nj dn; 16 i; j; k6 2;

are zero if the domain B is symmetric about its center.

Proof. Without loss of generality we can assume that B is centered at the origin. We first notice that the
symmetry assumption for B implies that the functions l and e are even. Set ŵwl

1iðnÞ ¼ v̂vl
1ið	nÞ. Then the

function ŵwl
1iðnÞ satisfies

div 1l grad ŵw
l
1i ¼ 0 in R2;

lim
jnj!þ1

ðŵwl
1i þ niÞ ¼ 0:

8<
: ð34Þ

It follows that ŵwl
1iðnÞ ¼ 	v̂vl

1iðnÞ, that is, v̂v
l
1i is odd. Set ŵw

l;e
2ijðnÞ ¼ v̂vl;e

2ijð	nÞ. ŵwl;e
2ij satisfies

div 1l grad ŵw
l;e
2ij ¼ 1

l0

eðnÞ
e0

dij in R2;

lim
jnj!þ1

ŵwl;e
2ij 	 1

2
ninj 	 dij 12p jBj 1	

e�
e0

� 

log jnj

� 

¼ 0:

8<
: ð35Þ

It follows that v̂vl;e
2ij is even. Next for n on oB we infer that

ov̂vl
1i

om

�����
	

ðnÞ ¼ 	 ov̂vl
1i

om

�����
	

ð	nÞ and
ov̂vl;e
2ij

om

�����
	

ðnÞ ¼ ov̂vl
1i

om

�����
	

ð	nÞ: ð36Þ

Thus the quantities

ov̂vl
1i

om

����� ðnÞnjnk and
ov̂vl;e
2ij

om

����� ðnÞnk
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are odd for n on oB. Consequently the change of variables n ! 	n will prove that M1;2
ijk and M

2;1
ijk as defined

in (18) and (19) are zero since oB is symmetric about the origin. By the same token we notice thatZ
B
v̂vl
1iðnÞdn and

Z
B

nj dn

are zero. We have thus proved that the four terms involved in the definition of the terms order 3 are equal to

zero. �

5.2. Discretizing the equations for the functions v̂vl
1i,

ov̂vl
1i

om j	 and v̂vl;e
2ij restricted to @B

In this section we assume that

the contour oB is given by ðxðtÞ; yðtÞÞ; 06 t < 2p; ð37Þ

where x and y are two real analytic 2p periodic functions. We are first going to describe how to derive a
natural discrete scheme for the Eqs. (25), (26) and (29). The derivation of such schemes is a classical ex-

ercise and has been performed by many authors. Our reason for giving a detailed formulation of these

schemes is merely for the sake of introducing notations that will be indispensable for stating and proving

our main result. It is also worth mentioning that these schemes provide an exponentially fast convergence

to the solutions of the associated continuous solutions, see [9], in particular chapters 10 and 12, and

chapter 14 for a study of numerical stability. If B is symmetric about its center we require the following on
x and y:

xðt þ pÞ ¼ 	xðtÞ; yðt þ pÞ ¼ 	yðtÞ: ð38Þ

We start with computing v̂vl
1i in Eq. (25). We denote K1ðt; sÞ the value of

oG0

omðn0Þ ðn; n
0Þ at n ¼ ðxðtÞ; yðtÞÞ; n0 ¼ ðxðsÞ; yðsÞÞ:

We notice that for a fixed t in ½0; 2p�, the function s! K1ðt; sÞ is real analytic. A calculation yields

K1ðt; sÞ ¼
	 1
2p

x0ðsÞðyðsÞ	yðtÞÞ	y0ðsÞðxðsÞ	xðtÞÞ
ððxðtÞ	xðsÞÞ2þðyðtÞ	yðsÞÞ2Þðx0ðsÞ2þy0ðsÞ2Þ1=2

if s 6¼ t;

	 1
2p

1
2

x00ðtÞy0ðtÞ	x0ðtÞy00ðtÞ
ðx0ðtÞ2þy0ðtÞ2Þ3=2

if s ¼ t:

8<
: ð39Þ

The second line in (39) is the limit of the first line as s approaches a fixed t. The length element relative to the
chosen parametrization of oB is rðsÞ ¼ ðx0ðsÞ2 þ y0ðsÞ2Þ1=2. Setting v̂vl

1iðxðtÞ; yðtÞÞ ¼ v1iðtÞ, i ¼ 1; 2, n1ðtÞ ¼ xðtÞ
and n2ðtÞ ¼ yðtÞ we need to solve the integral equation

1

2
1

�
þ l0

l�

�
v1iðtÞ þ

l0
l�

�
	 1
�Z 2p

0

K1ðt; sÞv1iðsÞrðsÞds ¼ niðtÞ; 06 t6 2p: ð40Þ

We set a uniform grid on [0,2p]:

tm ¼ sm ¼ mp
n

; m ¼ 0; . . . ; 2n	 1: ð41Þ

The above equation is simply discretized as

1

2
1

�
þ l0

l�

�
v1iðtmÞ þ

l0
l�

�
	 1
�

p
n

X2n	1
K1ðtm; slÞv1iðslÞrðslÞ ¼ niðtmÞ; m ¼ 0; . . . ; 2n	 1: ð42Þ
l¼0



384 H. Ammari, D. Volkov / Journal of Computational Physics 189 (2003) 371–389
We then focus on computing
ov̂vl
1i

om

���
	
, that is, we want to find a numerical solution to (26). We denote

K2ðt; sÞ the value of

oG0

omðnÞ ðn; n
0Þ at n ¼ ðxðtÞ; yðtÞÞ; n0 ¼ ðxðsÞ; yðsÞÞ:

A calculation yields

K2ðt; sÞ ¼
	 1
2p

x0ðtÞðyðtÞ	yðsÞÞ	y0ðtÞðxðtÞ	xðsÞÞ

ððxðtÞ	xðsÞÞ2þðyðtÞ	yðsÞÞ2Þðx0ðsÞ2þy0ðsÞ2Þ
1
2

if s 6¼ t;

	 1
2p

1
2

x00ðtÞy0ðtÞ	x0ðtÞy00ðtÞ

ðx0ðtÞ2þy0ðtÞ2Þ
3
2

if s ¼ t:

8><
>: ð43Þ

This makes s! K2ðt; sÞ a smooth function when t is fixed. We set

ov̂vl
1i

om

����
	
ðxðtÞ; yðtÞÞ ¼ W1iðtÞ; i ¼ 1; 2;

and write the right-hand side of (26) in a more explicit fashion

oni
om

ðxðtÞ; yðtÞÞ ¼ m1ðtÞ ¼ 	y0ðtÞ=ðx0ðtÞ2 þ y 0ðtÞ2Þ1=2 if i ¼ 1;
m2ðtÞ ¼ x0ðtÞ=ðx0ðtÞ2 þ y0ðtÞ2Þ1=2 if i ¼ 2;

�

where ðm1; m2Þ are the coordinates of the exterior normal vector m. We need to solve the integral equation

1

2
1

�
þ l0

l�

�
W1iðtÞ þ

l0
l�

�
	 1
�Z 2p

0

K2ðt; sÞW1iðsÞrðsÞds ¼ miðtÞ; 06 t6 2p: ð44Þ

The above equation is simply discretized as

1

2
1

�
þ l0

l�

�
W1iðtmÞ þ

l0
l�

�
	 1
�

p
n

X2n	1
l¼0

K2ðtm; slÞW1iðslÞrðslÞ ¼ miðtmÞ; m ¼ 0; . . . ; 2n	 1: ð45Þ

We now want to solve for v̂vl;e
2ij . Discretizing Eq. (29) involves more work since the right hand side of (29)

contains an integral with a logarithmic integration kernel. However the logarithmic singularity and the

integrand are 2p periodic and the integrand is smooth. It proves efficient to follow Nystrom�s integration
method as demonstrated in [9]. We set at n ¼ ðxðtÞ; yðtÞÞ; n0 ¼ ðxðsÞ; yðsÞÞ, t 6¼ s

G0ðn; n0Þ ¼ 	 1

2p
ln 4 sin2

t 	 s
2

� 
� 
�
þ K3ðt; sÞ



; ð46Þ

where K3 is the smooth function in s when t is fixed

K3ðt; sÞ ¼
1
2
log ðxðtÞ	xðsÞÞ2þðyðtÞ	yðsÞÞ2

4 sin2ðt	s
2
Þ

� 

if s 6¼ t;

1
2
log x0ðtÞ2 þ y0ðtÞ2
� 


if s ¼ t:

8<
: ð47Þ

Setting v̂vl;e
2ijðxðtÞ; yðtÞÞ ¼ v2ijðtÞ, i; j ¼ 1; 2, we need to solve the integral equation

1

2
1

�
þ l0

l�

�
v2ijðtÞ þ

l0
l�

�
	 1
�Z 2p

0

K1ðt; sÞv2ijðsÞrðsÞds ¼ bijðtÞ; 06 t6 2p; ð48Þ

where the right-hand side bij is defined as
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bijðtÞ ¼
1

2
niðtÞnjðtÞ þ dij 1

�
	 e�

e0

� Z 2p

0

 
	 1

2p
ln 4 sin2

t 	 s
2

� 
� 

n1ðsÞm1ðsÞrðsÞds

þ
Z 2p

0

	 1

2p
K3ðt; sÞn1ðsÞm1ðsÞrðsÞds	

Z 2p

0

K1ðt; sÞ
ðn1ðsÞÞ2

2
rðsÞds	 ðn1ðtÞÞ2

4

!
: ð49Þ

Eq. (48) is discretized as follows

1

2
1

�
þ l0

l�

�
v2ijðtmÞ þ

l0
l�

�
	 1
�

p
n

X2n	1
l¼0

K1ðtm; slÞv2ijðslÞrðslÞ ¼ bijðtmÞ; m ¼ 0; . . . ; 2n	 1: ð50Þ

To find bijðtmÞ we apply the following method, see [9]:

bijðtmÞ ¼
1

2
niðtmÞnjðtmÞ 	 dij 1

�
	 e�

e0

� X2n	1
l¼0

Qðm; lÞn1ðslÞm1ðslÞrðslÞ
 

þ 1

2n

X2n	1
l¼0

K3ðtm; slÞn1ðslÞm1ðslÞrðslÞ

þ p
n

X2n	1
l¼0

K1ðtm; slÞ
ðn1ðslÞÞ2

2
rðslÞ þ

ðn1ðtmÞÞ2

4

!
; ð51Þ

where

Qðm; lÞ ¼ 	 1
n

Xn	1
r¼1

1

r
cos rðtm

"
	 tlÞ þ

1

2n
cos nðtm 	 tlÞ

#
: ð52Þ
5.3. Main result

The theory guarantees that the linear systems (42), (45), (50)/(51) respectively in the unknowns

v1iðtmÞ, W1iðtmÞ, v2ijðtmÞ for m ¼ 0; . . . ; 2n	 1 are well posed for n large enough. They converge expo-
nentially to the solution of the corresponding continuous problems provided that xðtÞ and yðtÞ are real
analytic functions of t. In addition we are going to prove that for objects B symmetric about their
center the following result holds.

Proposition 5.2. Suppose that x and y are smooth, 2p periodic and satisfy (38). Suppose that the points tm are
given by (41) and that the linear systems (42), (45), (50)/(51) in their respective unknowns v1iðtmÞ, W1iðtmÞ,
v2ijðtmÞ for m ¼ 0; . . . ; 2n	 1 are regular. Then for m ¼ 0; . . . ; n	 1, we have

v1iðtmþnÞ ¼ 	v1iðtmÞ;
W1iðtmþnÞ ¼ 	W1iðtmÞ;
v2ijðtmþnÞ ¼ v2ijðtmÞ:

ð53Þ

In other words the numerical schemes that we used preserve the fact that v̂vl
1i and

ov̂vl
1i

om

���
	
are odd and that v̂vl;e

2ij is

even. The following lemma will be the main ingredient in proving Proposition 5.2.

Lemma 5.1. Let X and C be two 2n� 1 vectors and A be a regular 2n� 2n matrix such that AX ¼ C. Denote
J the 2n� 2n matrix

J ¼ 0 In
I 0

� �
; ð54Þ
n
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where In is the n� n identity matrix. Assume that J and A commute, that is JA ¼ AJ . If JC þ C ¼ 0, that is C
is in the nullspace of J þ I2n (respectively JC 	 C ¼ 0, C is in the nullspace of J 	 I2n) then JX þ X ¼ 0, that is
X is also in the nullspace of J þ I2n (respectively JX 	 X ¼ 0, X is also in the nullspace of J 	 I2n).

Proof. We notice that J 2 ¼ I2n thus J	1 ¼ J . It follows that JA	1 ¼ A	1J . If JC þ C ¼ 0 then

JX þ X ¼ JA	1C þ A	1C ¼ A	1ðJC þ CÞ ¼ 0:

The proof for the case JC 	 C ¼ 0 is similar. �

Proof of Proposition 5.2. We first notice that if we write a 2n� 2n matrix A in blocks

A ¼ A1 A2
A3 A4

� �
;

where each of the blocks is of size n� n, then A and J commute if and only if A1 ¼ A4 and A2 ¼ A3. We also
notice that the 2n� 1 vector ðCmÞ06m6 2n	1 is in the nullspace of J þ I2n if and only if Cmþn ¼ 	Cm for
m ¼ 0; . . . ; n	 1 and ðCmÞ06m6 2n	1 is in the nullspace of J 	 I2n if and only if Cmþn ¼ Cm for

m ¼ 0; . . . ; n	 1.
Using the assumption (38) on x and y and the definitions (39), (43), (47) for K1, K2, K3 we derive

Krðt þ p; sþ pÞ ¼ Krðt; sÞ and Krðt þ p; sÞ ¼ Krðt; sþ pÞ for r equal to 1, 2 or 3. For any l and m in

f0; . . . ; n	 1g, according to (41), we can write tmþn ¼ tm þ p and slþn ¼ sl þ p and thus we have found that

Krðtmþn; slþnÞ ¼ Krðtm; slÞ; Krðtmþn; slÞ ¼ Krðtm; slþnÞ; where l;m 2 f0; . . . ; n	 1g; r 2 f1; 2; 3g:
ð55Þ

In addition we also have for the length element the property rðslþnÞ ¼ rðslÞ. It follows that each of the
matrices derived from the linear systems (42), (45) and (50) commutes with J . Since niðtmþnÞ ¼ 	niðtmÞ
and miðtmþnÞ ¼ miðtmÞ for m ¼ 0; . . . ; n	 1 each of the right-hand side vector in (42) and (45) is the nullspace
of J þ I2n. We can apply Lemma 5.1 to the linear systems (42) and (45) to obtain the first two identities in
(53).

There remains to prove that the right-hand side vector in (50) is in the nullspace of J 	 I2n. Since
tmþn 	 tlþn ¼ tm 	 tl, where l and m are in f0; . . . ; n	 1g the definition (52) for Q implies that

Qðmþ n; lþ nÞ ¼ Qðm; nÞ. In addition Q enjoys the following property for l and m in f0; . . . ; n	 1g

Qðmþ n; lÞ ¼ 	 1
n

Xn	1
r¼1

1

r
cos rðtmþn

"
	 tlÞ þ

1

2n
cos nðtmþn 	 tlÞ

#

¼ 1
n

Xn	1
r¼1

1

r
cosðrðm

"
	 lÞ p

n
þ pÞ þ 1

2n
cosððmþ 1	 lÞpÞ

#

¼ 1
n

Xn	1
r¼1

1

r
cosðrðm

"
	 lÞ p

n
	 pÞ þ 1

2n
cosððm	 ðlþ 1ÞÞpÞ

#

¼ 	 1
n

Xn	1
r¼1

1

r
cos rðtm

"
	 tþnlÞ þ

1

2n
cos nðtm 	 tlþnÞ

#
¼ Qðm; lþ nÞ: ð56Þ

Thus Q enjoys a property akin to (55), namely,

Qðmþ n; lþ nÞ ¼ Qðm; nÞ; Qðmþ n; lÞ ¼ Qðm; lþ nÞ; l;m 2 f0; . . . ; n	 1g: ð57Þ



H. Ammari, D. Volkov / Journal of Computational Physics 189 (2003) 371–389 387
Then using (51), (57) and (55), for m in f0; . . . ; n	 1g

bijðtmþnÞ ¼
1

2
niðtmþnÞnjðtmþnÞ 	 dij 1

�
	 e�

e0

� X2n	1
l¼0

Qðm
 

þ n; lÞn1ðslÞm1ðslÞrðslÞ

þ 1

2n

X2n	1
l¼0

K3ðtmþn; slÞn1ðslÞm1ðslÞrðslÞ þ
p
n

X2n	1
l¼0

K1ðtmþn; slÞ
ðn1ðslÞÞ2

2
rðslÞ

þ ðn1ðtmþnÞÞ2

4

!
¼ 1
2
niðtmÞnjðtmÞ 	 dij 1

�
	 e�

e0

� Xn	1
l¼0

½Qðm
 

þ n; lÞn1ðslÞm1ðslÞrðslÞ

þ Qðmþ n; lþ nÞn1ðslþnÞm1ðslþnÞrðslþnÞ� þ
1

2n

Xn	1
l¼0

½K3ðtmþn; slÞn1ðslÞm1ðslÞrðslÞ

þ K3ðtmþn; slþnÞn1ðslþnÞm1ðslþnÞrðslþnÞ� þ
p
n

Xn	1
l¼0

½K1ðtmþn; slÞ
ðn1ðslÞÞ2

2
rðslÞ

þ K1ðtmþn; slþnÞ
ðn1ðslþnÞÞ2

2
rðslþnÞ� þ

ðn1ðtmÞÞ2

4

!
¼ 1
2
niðtmÞnjðtmÞ 	 dij 1

�
	 e�

e0

�

�
Xn	1
l¼0

½Qðm; l
 

þ nÞn1ðslþnÞm1ðslþnÞrðslþnÞ þ Qðm; lÞn1ðslÞm1ðslÞrðslÞ�

þ 1

2n

Xn	1
l¼0

½K3ðtm; slþnÞn1ðslþnÞm1ðslþnÞrðslþnÞ þ K3ðtm; slÞn1ðslÞm1ðslÞrðslÞ�

þ p
n

Xn	1
l¼0

½K1ðtm; slþnÞ
ðn1ðslþnÞÞ2

2
rðslþnÞ þ K1ðtm; slÞ

ðn1ðslÞÞ2

2
rðslÞ� þ

ðn1ðtmÞÞ2

4

!
¼ bijðtmÞ:

ð58Þ

The above identity proves that the right-hand side vector in (50) is in the nullspace of J 	 I2n, thereby
concluding the proof of Proposition 5.2. �
5.4. Final calculations yielding the terms of order 3

After evaluating v̂vl
1i,

ov̂vl
1i

om
j	 and v̂vl;e

2ij numerically we have to discretize the integrals in (18) and (19). Next

we have to rewrite M2;1
ijk with integrals on oB using v̂vl;e

2ij instead of
ov̂vl;e
2ij

om
j	. Repeated use of the divergence

theorem yields

M2;1
ijk ¼

Z
oB
v̂vl;e
2ijmk dsðnÞ:

Now all the integrals in the definitions of M1;2
ijk and M

2;1
ijk involve smooth functions integrated along the

smooth contour oB. Using the parametrization ðxðtÞ; yðtÞÞ; 06 t < 2p of oB we have to numerically evaluate
integrals over ½0; 2p� of 2p periodic smooth functions. It is well known that this is best done by applying the
usual trapezoidal rule.

In the case where oB is symmetric about its center we derive for m in f0; . . . ; n	 1g

n2kðtmþnÞmkðtmþnÞrðtmþnÞ ¼ 	n2kðtmÞmkðtmÞrðtmÞ
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and with the help of Proposition 5.2

ov̂vl
1i

om

�����
	

ðnðtmþnÞÞnjðtmþnÞnkðtmþnÞrðtmþnÞ ¼ 	 ov̂vl
1i

om

�����
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It is now easy to see how the terms in the sums discretizing
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cancel out two by two.

Two more integrals appear in the formulas (20) and (21). We first turn them into boundary integrals

using the divergence theorem:Z
B
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ð59Þ

If oB is symmetric about its center the same arguments developed in the preceding paragraph apply to the
right-hand side integrals in (59), they are exactly equal to 0 at the discrete level. It is now clear why the order

of magnitude of the numbers in the last column of Table 1 is so small compared to that of the numbers in

the center column, for all values of the number of interpolation points 2n.
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